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Fast Development of Artificial Intelligence

1956 1974 1980 1987 1993 2011

AI Birth
The first AI
conference

“Dartmouth 
Conference”

Advanced
machine
learning
techniques, big
data….

Artificial
Intelligence

Present

Symbolic AI
Researchers 
expressed an 

intense optimism 

AI Winter
Difficulties from
limited computer

power, poor
scalability of AI…

Landmark event:
Shakey, the first general-

purpose mobile robot built

AI Boom
Expert systems

and the fifth
generation

computer project

AI Winter
Expensive to 

maintain, difficult 
to update, could 

not learn…

AI Boom
Increasing 

computer power,
many subjects

(e.g., EE) that AI 
needed to help

Landmark event :
AlphaGo…

Landmark event :
Supercomputer,

"Deep blue”
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Fantastic Application: AlphaGo

Source: https://www.davidsilver.uk/wp-content/uploads/2020/03/AlphaGo-tutorial-slides_compressed.pdf

• Advanced machine learning techniques (e.g. convolutional neural networks, supervised
learning, reinforcement learning) are combined with tree search techniques.

• Human players (e.g. Lee Sedol (9p), Fan Hui(2p)) were beaten.

Machine learning

Policy networks:
Which location is 
likely to select?  

Value networks:
The consequence of 
policies (win or lose?)

Aid decision-
making for the 
current situation

What is the next step? —Tree search-based decisions

Machine learning-based reduced complexity 
by cutting off numerous leaves of the tree

Human expert games 
and self-play games
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Fantastic ChatGPT

• A language model released by OpenAI in 2022, capable of interacting with users on
various topics

• Answer questions (e.g., factual question)
• Write and debug computer programs
• Generate texts (e.g., student essays)
• Emulate systems (e.g., a Linux system….)
• ……

Answer to a question in Microsoft Bing A paragraph of codes An essay An emulation of Linux
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AI Techniques Behind ChatGPT
• The success of ChatGPT comes from AI techniques (e.g., deep neural networks and

reinforce learning)

Source: https://openai.com/blog/chatgpt

Real world

Input
layer

Output
layer

Hidden layer

AI techniques

reward

Data
input

Action

Yo
ur

ne
ed

s

A
ct

io
n

Three training steps ……

Many
uses
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Decision Making in Power System Planning and Operation

Prediction

Uncertainty 
Modeling

Uncertainty 
Management

Economic Dispatch (ED) 
Optimal Power Flow (OPF)
Transient Stability OPF
Unit Commitment (UC)

Energy Storage Sizing 
Electricity Markets

1
2
3
4

5
6

Optimization Problem 

Objective Functions Decision Variables Constraints
Decision 
Making 
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Prediction Techniques

Statistical

Machine Learning-based 

Hybrid

Aims at inferring relationship between variables

Focus on training the prediction models and 
make predictions as accurate as possible.

Both statistical and Machine learning-based 
techniques are employed in an integrated 
framework to improve accuracy.

For example, statistical techniques can be employed 
for data processing, feature extraction/selection, or 
dimension reduction, and then having the Machine 
learning-based techniques as the prediction engine.
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Framework of Machine Learning-based Prediction Techniques

https://www.7wdata.be/

Historical Input Data
Data 

Collection

Data 
Preprocessing

Model 
Training

Model Testing

Historical Output 
Data

• Find correlated 
factors

Data Refining

Feature 
Extraction/Selection

Testing Data

Performance 
Indicators

Model Selection

Parameter Selection

• Improve data 
quality

• Develop 
prediction model

• Evaluate 
performance
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Conventional Machine Learning Techniques

Predict the instance
class from pre-labeled
(classified) instances.

Predict a continuous
attribute

Find grouping of
instances given un-
labeled data

Classification Clustering Regression

Applications in power system area: 
Classification: Power system status prediction, e.g., stability prediction;
Clustering: clustering of consumers’ electricity usage pattern; 
Regression: wind power forecasting, etc.

Artificial Neural Network (ANN), Support Vector Machine (SVM), 
Decision Tree (DT), Ensemble Learning, Etc.
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High-dimensional Big Data of Power Systems
The data from power systems are collected at large scale and at high rate. For example:

Curse of dimensionality

High mathematical complexity

High computational burden

Large data storage requirements

Low algorithmic efficiency

Multi-channel PMUs providing voltage 
and current phasors at a sampling rate 

of up to 60 samples per second

Big Data
4V’s:

Volume (High)
Velocity (High)
Variety (High)
Veracity (High)Smart meters providing electricity 

consumption data every 1 to 15 
minutes interval

The high-dimensional big data of power systems introduces several challenges :
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Advanced Statistical Modeling for High Dimensional Cases

Statistical 
Techniques

Feature 
Extraction and 

Selection

Backward 
Feature 

Elimination

Forward Feature 
Selection 

Etc.

Dimensionality 
Reduction

Linear Methods

Principal 
Component 

Analysis (PCA)

Compressed 
Sensing

Etc.

Non Linear 
Methods

Diffusion Maps

Self-Organizing 
Maps

Etc.

Extracting and selecting 
suitable dimensions without 

modifying them

Reducing the dimensions of the 
given data by transforming them

13
Prof. C. Y. ChungAdvanced Prediction Techniques Applied to Smart Grids by

Presenter Notes
Presentation Notes




Deep Learning Technique

Machine Learning-based prediction 
Methods

Deep Learning

• Handling big data problems;

• Great performance in high-
dimensional search spaces;

• Capturing long-term 
dependencies amongst data.

Popular Network Architectures in 
Deep Learning:

• Recurrent Neural Network; Long/Short 
Term Memory (LSTM),

• Convolutional Neural Networks, 
• Boltzmann Machine,
• Deep Belief Networks, 
• Stacked Auto-encoders,
• Etc.

Performance comparison of traditional 
methods versus deep-learning methods

For Big Data Applications
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Uncertainties in Power Systems and Modeling Approaches

Renewable energy sources

Load demand

Dynamic line rating

Line/Generator outage

Fuel/Energy price

Market regulations, etc.

Uncertainties in 
Power Systems
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Applications of Advanced Prediction
Techniques in Smart Grids
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Example I: Wind Power Prediction
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Morse Creek Wind Power Facility    23 MW      
Centennial Wind Power Facility        149.4 MW       

SunBridge Wind Power Facility         11.2 MW

1

2

3
4

Cypress Wind Power Facility              10.6 MW

Red Lilly Wind Power Facility           26.4 MW5

Chaplin Wind Power Facility             177.1 MW7

Western Lily Wind Power Facility    20 MW8

Riverhurst Wind Power Facility       10 MW9

Increasing wind power penetration to 30% 
( = 2100 MW) by 2030

…

Summerberry Wind Power Facility  20 MW6

1
2 3

4
5

7 8

9

6

Wind Power Facilities in Saskatchewan
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Novel Short-Term Wind Power Prediction Method
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 Chaos is a property of certain non-
linear systems with highly wild,
random-looking and non-periodic
behavior.

 Existing wind power prediction
methods cannot handle the chaosity of
wind power time series.

 A novel multi-step short-term wind power prediction method [2] is proposed:
• Ensemble Empirical Mode Decomposition (EEMD) to separate wind power time series into

several components with different time-frequency characteristics (scales).
• Chaotic Time Series Analysis to determine chaotic components.
• Multi-Scale Singular Spectrum Analysis (MSSSA) to smoothen the chaotic components by

eliminating extremely rapid changes with low amplitude (Maintain the general trend!).

[2] N. Safari, C. Y. Chung, and G. C. D. Price, “A novel multi-step short-term wind power prediction framework based on chaotic
time series analysis and singular spectrum analysis”, IEEE Transactions on Power Systems.
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Prediction Interval (PI) Construction for Modelling Wind Power Uncertainty

 Sharpness: Average value of PI width.
 Reliability: Percentage of wind power samples coverage.

𝒚𝒚

𝒚𝒚
High operating cost

Optimal operating cost

High reliability and low sharpness

High operating cost
Low reliability and high sharpness

𝒚𝒚

𝒚𝒚

𝒚𝒚

𝒚𝒚
Prediction Interval  (PI) Evaluation Criteria
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Performance of the Proposed PI Construction
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The constructed PI for 1-hour prediction horizon for AESO dataset. 
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The constructed PI for 1-hour prediction horizon for Centennial dataset. 
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The constructed PI for 1-hour prediction horizon for Sotavento dataset. 

• PI Construction 
Framework [3] 
developed  by 
improving diffusion-
based kernel density 
estimators.

• Highly reliable and 
sharp PIs obtained.

[3] B. Khorramdel, C.Y. Chung, and N. Safari, G.C.D. Price, “A Fuzzy Adaptive Probabilistic Wind Power Prediction
Framework Using Diffusion Kernel Density Estimators,” IEEE Trans. on Power Systems.
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Example II: Real-time Thermal Rating 
(Overhead Lines)
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Real-time Thermal Rating  (RTTR) vs. Static Thermal Rating (STR)

Source: CIGRE standard

Measuring RTTR
• Relieve congestion
• Avoid/defer new investment
• Lower risk (avoid blackouts)

Static Thermal 
Rating (STR)

• Inaccurate
• Conservative

 Heat balance equation
• Joule & Magnetic Heating (PJ) , Solar Heating (PS)
• Convective Cooling (Pc), Radiative cooling (Pr)
• CIGRE, IEEE

 Affecting factors
• Solar radiation
• Wind speed
• Wind direction
• Ambient temperature
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Five Types of RTTR Monitoring Systems

Wind speed & direction

Tension
Conductor 
temperature

Clearance

Conductor 
temperature

Tension

Sag

Weather

Heat Balance Equation is required in 
each monitoring system to calculate 
the RTTR.

Power donut nut

Tension Monitoring Systems-Loadcell Monitors

Sagometer

Hand-held SONAR

Solar radiation Ambient 
temperature

Conductor model directional 
anemometer

Traditional 
propeller-type & 
ultrasonic 
anemometers
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RTTR Prediction for Operation

Four Weather Factors

Measurement

Prediction

From CIGRE 2014

Heat Balance Model
• CIGRE, IEEE, IEC standards
• Consider four weather factors

• Method: Statistical and machine-
learning based 

• Output: Predicted values for each factor

• Suitable locations and spans
Predicted RTTR

Wind direction

Ambient temperature

Wind speed

Solar radiation
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Probabilistic RTTR Prediction for Operation

 Any overestimation of RTTR 
can lead to lifetime 
degradation and failure of 
OHL, safety hazards, etc.

 A secure yet sharp 
probabilistic prediction 
model [4] for an hour ahead 
forecasting of RTTR is 
proposed. 

𝐶𝐶𝐿𝐿∗ = 95%

20 40 60

Sample # (1-hour sample time)

800

1000

1200

1400

1600

Am
pa

ci
ty

 (A
m

pe
re

)

Actual Proposed

CL*: specified confidence level 

Static Thermal Line Rating = 685A

[4] N. Safari, M. Mazhari, C. Y. Chung, et.al.,  “A Secure Deep Probabilistic Dynamic Thermal Line Rating Prediction" Journal of 
Modern Power Systems and Clean Energy (MPCE).
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Example III: Transient Stability Prediction of 
Power Systems With High Wind Power 

Penetration
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Transient Stability Prediction

Data Process

Real-Time Phasor Measurement 
Units (PMU) Data

Prediction & 
Decision

Stability prediction: 
Unstable case

Stability prediction: 
Stable case

𝑡𝑡c: fault clearance𝑡𝑡f: fault occurs

Power Network
Fast Prediction For a Post-Fault System

Allow more time to 
take remedial actions 

Critical synchronous 
generators (SGs)

Remaining SGs
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Real-Time Transient Stability Prediction Using Machine Learning and PMUs

PMUs

Use the data (voltage, rotor speed, etc.)
for before-, during-, and post-fault as
features for stability prediction

Machine Learning

Integration of wind power plants:

 Can impose multisource uncertainties to power systems and
exponentially increase the possible system operating conditions;

 Can frequently change the generation schedule and system inertia.

These features may no longer be so useful:

REAL-TIME DATA
INSTANTANEOUS 

PREDICTION

The amount of
required training
data exploded
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Equivalent the Wind Power Plant as Dynamic Admittances [5]

Network
(reduced at generator 

internal nodes and WPPs )

... ...
1WPP WPPm′ 1WPPm′+ WPPn′

𝐸𝐸𝑚+1

𝐸𝐸𝑛

...

𝐸𝐸1

𝐸𝐸𝑚
~
~~

~
 𝑽𝑚′ 𝑽1  𝑽𝑚′+1  𝑽𝑛′

S

G H

A

New
Equivalent
Network

𝑌𝑌1′

𝑌𝑌𝑚′

𝑌𝑌𝑚+1
′

𝑌𝑌𝑛′

...

𝐸𝐸𝑚+1

𝐸𝐸𝑛

...

𝐸𝐸1

𝐸𝐸𝑚
~
~~

~
S A

[5] Y. Chen, M. Mazhari, C.Y. Chung, and B. Pal, "Rotor Angle Stability Prediction of Power Systems with High Wind
Power Penetration Using a Stability Index Vector," IEEE Trans. on Power Systems.

Critical synchronous 
generators

Remaining synchronous 
generators

Equivalent Circuit of WPPs

𝑌𝑌𝑖𝑖′ = ∑𝑔𝑔∈𝐺𝐺 1 − 𝑉𝑉𝑔𝑔
𝐸𝐸𝑖𝑖

𝑌𝑌𝑖𝑖𝑔𝑔

+ �
ℎ∈𝐻𝐻

1 −
𝑉𝑉ℎ
𝐸𝐸𝑖𝑖

𝑌𝑌𝑖𝑖ℎ
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Estimated Stability Index (SI) Column Vector for Stability Prediction

𝑡𝑡f: fault time;   
𝑡𝑡c: fault clearance 
time;
𝑡𝑡u: time instant 
when the system 
reaches the unstable 
equilibrium point

𝛿𝛿(𝑡𝑡u)𝛿𝛿(𝑡𝑡f)𝛿𝛿 𝑡𝑡c

Calculate the stability index (SI) utilizing 
Extended Equal Area Criterion (EEAC) 
considering the dynamic admittances 

𝑆𝑆𝑆𝑆vector

Decision Made by 
Machine Learning

Real-Time Data

𝑆𝑆𝐼𝐼1

𝑆𝑆𝐼𝐼2

𝑆𝑆𝐼𝐼n

⋮

𝑆𝑆𝑆𝑆1

𝑆𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆n

All Possible Instability 
Modes (IMs) 

𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆2
⋮
𝑆𝑆𝑆𝑆n

Extend SI to an 
SI column 
vector 

𝑆𝑆𝑆𝑆 = 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑−𝐴𝐴𝑎𝑎𝑑𝑑𝑑𝑑
𝐴𝐴𝑎𝑎𝑑𝑑𝑑𝑑
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Slide 33

Case Studies

Features
WIC* Rotor angles (𝛿𝛿) Rotor speeds (𝜔𝜔) Terminal voltages (𝑉𝑉𝐺𝐺) Proposed (SI vector)
10% 93.61% 97.05% 96.88% 98.98%
20% 92.59% 95.38% 95.79% 98.59%
30% 92.18% 94.82% 94.42% 98.46%
40% 91.14% 92.06% 92.29% 98.17%
50% 89.56% 91.24% 91.35% 97.96%

Comparison of the accuracy of different features 

*WIC: Wind power Installed Capacity ratio 
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The modified 16-machine network with 9 wind power plants (WPPs)

 Fault is applied on each line randomly
 Fault duration is select between 6-15 cycles 

randomly
 Load level and WPP generation is sampled 

from historical data for each simulation
 All WPPs use DFIG wind turbines
 All the dataset are trained and tested by 

ensemble decision tree
 7000 cases are simulated for each penetration

Details of Simulation Analyses
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Example IV: Load Forecasting in 
Distribution Systems
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Unlock the Value of Smart Meter Data

Interval consumption, demand and 
voltage data

Virtual meter data of transformer, feeder 
and substation from GIS

SCADA

Integration

Aggregation

Simple applications

• Billing/Prepayment
• Customer relationship 

management (CRM)
• Load monitoring

Advanced applications

• Field operation & planning
• Asset management
• Outage management

Rely on accurate load 
forecasts

 The remarkable evolution of smart meters has provided better network visibility of the 
distribution networks through advanced metering infrastructure.
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Smart Meters Analysis in City of Saskatoon

Saskatoon Light and Power (SL&P) have installed smart
meters in all of the communities within its service area (Over 99%
of more than 65,000 customers )

Total capital costs: CAD 24 M
System operation costs: CAD 22 M
Total projected savings: CAD 76 M
Payback period: ~ 11 years

No DR program

Our research focuses on using SL&P smart meters data
for customers segmentation and load forecasting.

 Facilitate system operation & planning
 Optimize asset management
 Implement demand response
 Encourage energy efficiency

Aims

Data source: https://www.saskatoon.ca/

36
Prof. C. Y. ChungAdvanced Prediction Techniques Applied to Smart Grids by

Presenter Notes
Presentation Notes


https://www.saskatoon.ca/


Slide 37

Customer Segmentation and Load Forecasting

Cluster No. of Customers

1 1641

2 1352

3 360

Outliers 147

Outliers are defined as those whose average consumption 
is lower than 0.1 KWh per 30 mins (unoccupied).

Total: 3500 customers
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Typical daily profile in summer season

cluster1

cluster2

cluster3

Which asset will possibly be overloaded 
tomorrow?

90% prediction intervals

50% prediction intervals

real consumption value

forecasted consumption value

Forecast Evaluated by MAPE

MAPE: The Mean Absolute Percentage Error

Method MAPE

Proposed 2.98%

Proposed without segmentation 5.79%
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Conclusions
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Conclusions

 Power systems are facing a revolutionary transformation to incorporate various smart 
grids components. 

 Such components tightly integrated with ICT and IoT and consequently generated a 
vast amount of data suitable to support different applications in a smart grid.

 Four different examples were discussed to showcase the applications of advanced 
prediction methods to resolve current barriers in power systems.

 Power industries are facing many new technical problems => Huge research 
opportunities.
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My vision leverages PES’s strengths to lead the global transition towards
decarbonization, digitalization, and decentralization of power and energy systems. 

Propose a five-step plan:
(i) establishing stronger local partnerships,
(ii) internationalizing PES through diverse connections,
(iii)developing targeted marketing and outreach,
(iv)boosting region- and minority-tailored membership development,
(v) enhancing member support.

Ensuring PES remains a vital resource worldwide.

IEEE PES Election is now open: https://eballot.app/ieee/

Presenter Notes
Presentation Notes




Thanks!

41
Prof. C. Y. ChungAdvanced Prediction Techniques Applied to Smart Grids by

Presenter Notes
Presentation Notes



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Fast Development of Artificial Intelligence
	Fantastic Application: AlphaGo
	Fantastic ChatGPT
	AI Techniques Behind ChatGPT
	Decision Making in Power System Planning and Operation
	Prediction Techniques
	Framework of Machine Learning-based Prediction Techniques
	Conventional Machine Learning Techniques
	High-dimensional Big Data of Power Systems
	Advanced Statistical Modeling for High Dimensional Cases
	Deep Learning Technique
	Uncertainties in Power Systems and Modeling Approaches
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Novel Short-Term Wind Power Prediction Method
	Prediction Interval (PI) Construction for Modelling Wind Power Uncertainty
	Performance of the Proposed PI Construction
	Slide Number 23
	Real-time Thermal Rating  (RTTR) vs. Static Thermal Rating (STR)
	Five Types of RTTR Monitoring Systems
	RTTR Prediction for Operation
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41

