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= Fast Development of Artificial Intelligence

Al Birth Al Winter Al Winter raT—

The first AL Difﬁculties from Expensive to .

conference limited computer maintain, difficult learning
“Dartmouth power, poor to update, could oo
Conference” scalability of Al... 1ot learn. .. . 1ques, big

Landmark event :
AlphaGo...

¥

Artificial
Intelligence -
Symbolic Al gliBoom Increasing
Researchers QR systems computer power,
expressed an g ° ﬁﬂh many subjects
intense optimism generatlon' (e.g., EE) that Al
computer project needed to help
Landmark event: Landmark event :
Shakey, the first general- Supercomputer,
purpose mobile robot built "Deep blue”
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O Fantastic Application: AlphaGo

* Advanced machine learning techniques (e.g. convolutional neural networks, supervised
learning, reinforcement learning) are combined with tree search techniques.
*  Human players (e.g. Lee Sedol (9p), Fan Hui(2p)) were beaten.

PR T FE A R b What is the next step? —Tree search-based decisions
FFT TP T R - t
T([[[ Bl L‘| Aid decision- :
Human expert games making for the y b
and self-play games current situation . . .
Machine learning-based reduced complexity
Machine learning by cutting off numerous leaves of the tree
Move probabilities Evalua!lon o / $
. @ 2
o \ (
‘
[$1
. Policy networks: Value networks: e
’ Which location is 9 The consequence of - =
likely to select? policies (win or lose?) RS S s o N TN
Position Position B O O MO O ORR 3 B KX

Source: https://www.davidsilver.uk/wp-content/uploads/2020/03/AlphaGo-tutorial-slides_compressed.pdf
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Fantastic ChatGPT

* A language model released by OpenAl in 2022, capable of interacting with users on
various topics

Answer questions (e.g., factual question)
Write and debug computer programs
Generate texts (e.g., student essays)
Emulate systems (e.g., a Linux system....

e e o0 00

o

Extstd Resdog T 6 i

117 Vegetarian Dinner Recipesfor a Diner Party
[ ———

St isenprtescon

Try the new Bing' ahead o the oficiallaunch. Howto preview the .
s et mashable.cor

Aot Ccty M

Bing-Chat GPT negraton: Trings can do ightnow
ieofdaindres ot ev..-

Sure,|can soqgest 2 Scouse meny ith achocdle

esseforyour vegtaran Gy Hece e some

possbie ptors:

+ St Wi Mushroom Tartets with Onon Sauce
orVegan Popoom Tofu Nuggets

+ Wi Vogan Buternut Squash Mac * orVegetaian
Three-Bean Chii

+ Desset:Chocolae Lava Cake * or Chocalae Pasta
With Chocolte Hazelt ream Sauce, Wit

Welcome o the new Bing, your Al-powered
copiot for the web.

suggst o, cairs

Answer to a question in Microsoft Bing
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DU were a debugger executing this python coede. I've put a breakpoint at
_number{rand):" inside the find_number} function. I'm asking you to

show me the call stack, the stdout output, and the values of the local variables at that

moment.

Assuming a breakpoint is placed at the I

find_numbe:
like this:

if check_number(rand):" inside the

function, the execution stack and local variables at that paint would look

e randon runber generated by

A paragraph of codes

‘Write me an essay titled *Compare and contrast the UK Labour party under Tony Blair and
Jeremy Corbyn"

The UK Labour party has undergone significant changes in leadership and ideclagy aver
the years. In this essay, we will compare and contrast the party under the leadership of
‘Tony Blair and Jeremy Corbyn, two very different figures who have shaped the direction of
the party in their own ways.

Under Tony Blair, the Labour party shifted towards a more moderate, centrist ideology,

abandoning many of the traditional left-wing policies that had been the foundation of the

party for decades. Blair, who became party leader in 1994 and served as Prime Minister

from 1997 to 2007, was a key architect of this EHi't, known as "New Labour." He embraced
ke i and amore i foreign policy.

In contrast, Jeremy Corbyn, who became party leader in 2015, has been a vacal advocate
for traditional left-wing policies, such as nationalization of industries, higher taxes on the
wealthy, and a mare pacifist approach to foreign policy. He has also been a strong critic of
Blair and the “New Labour" project, arguing that the party needs to return to its roots in
order to truly serve the working-class voters it was founded to represent.

An essay

3

curl --header "Content-Type: applicationfjson" --request POST --data '{"message":"|

1.1 will type commands ant J will rey hat the
terminal should show. | want you to only reply with the terminal output inside one unigue
code block, and nothing else. De no write explanations. My first command is
hty z i.comfchat

An emulation of Linux
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Al Techniques Behind ChatGPT

* The success of ChatGPT comes from AI techniques (e.g., deep neural networks and

reinforce learning)

Step1
% O Collect demonstration data
5 8 and train a supervised policy.
g —0 —=
— SO et Q
5 —Ou\glit < .
>? YL \ 9/’;0‘»::\: Aprompt is %
\ . ‘f}”‘ . O t t sampled from our Explain reinforcement
/ u pu prompt dataset. learning to a 6 year old.

I O
nput
layer  Hidden layer

L
i

Alabeler @
demonstrates the

desired output 4
behavior.

X,

'

SFT

This data is used to ./5?.7&.
fine-tune GPT-35 Y
with supervised V4
learning. EEE

IEEE PES
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We give treats and
punishments to teach...

Step2
Collect comparison data and
train a reward model.
Aprompt and [
L Y]

several model Ei]

plain reinforcement
OUtpUtS are learning to a 6 year old.
sampled.

mmmmmmmmm

Alabeler ranks the
outputs from best

toworst. 0°0-0-0
RM
This data s used ey
to train our '\..\sa{/.
reward model.
0-0-0-0

Three training steps

Step3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is o
sampled from Wite astory
the dataset. about otters.
The PPO model s oo
initialized from the N,
supervised policy. W
The policy generates e
an output.

The reward model A
calculates a reward N,
for the output. W1y
The reward is used *

to update the rk

policy using PPO.

e e o o o o . — — — — —— — —— —— — — —— — — — — — — —

@ OpenAl ':f

ChatGPT i

Many
uses

Source: https://openai.com/blog/chatgpt
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Decision Making in Power System Planning and Operation

[ Optimization Problem ]

— 3 T S

[Objective Functions ][ Decision Variables ] [ Constraints ]

Decision

‘ ( 1 Economic Dispatch (ED)

\\2 Optimal Power Flow (OPF)
“3 Transient Stability OPF
4; Unit Commitment (UC)

Prediction 5 Energy Storage Sizing
/J

6 Electricity Markets
4
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® Prediction Techniques

Aims at inferring relationship between variables

_ Focus on training the prediction models and
make predictions as accurate as possible.

Both statistical and Machine learning-based
techniques are employed in an integrated
framework to improve accuracy.

For example, statistical techniques can be employed
for data processing, feature extraction/selection, or
dimension reduction, and then having the Machine
learning-based techniques as the prediction engine.
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Framework of Machine Learning-based Prediction Techniques
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v
Prediction

Evaluate

Data
Collection

Data
Preprocessing

Model
Training

Model Testing

Historical Input Data

<

Historical Output
Data

Data Refining

Feature
Extraction/Selection

Model Selection

Parameter Selection

Testing Data

ANVANEPAN

Performance
Indicators

Find correlated
factors

Improve data
quality

Develop
prediction model

Evaluate
performance
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Conventional Machine Learning Techniques

’ Artificial Neural Network (ANN), Support Vector Machine (SVM), N\
Decision Tree (DT), Ensemble Learning, Etc.

Classification Regression

target

— o e e e e o o e e e
’—
e e o e e e o e e e o o

Predict the instance Find  grouping of Predict a continuous
class from pre-labeled instances given un- attribute /
v (classified) instances. labeled data i

~ -

o e o e m e M mmn e mmm Mmm M e Mmm Mmm mmn e Mmm Mmm Mmm e Mmm Mmm M e Mmm Mmm M e Mmm Mmm M e Mmm Mmm M e Rmm Mmm M e Mmm M M e Mmm M M e e

Applications in power system area:

Classification: Power system status prediction, e.g., stability prediction;
Clustering: clustering of consumers’ electricity usage pattern;
Regression: wind power forecasting, etc.
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High-dimensional Big Data of Power Systems

» The data from power systems are collected at large scale and at high rate. For example:

Big Data
4V’s:
Volume (High)
Velocity (High)
Variety (High)
Veracity (High)

ISmart meters providing electricity
I consumption data every 1 to 15
| minutes interval

Multi-channel PMUs providing voltage
and current phasors at a sampling rate

|
|
|
|
|
|
|
|
of up to 60 samples per second ;

I
|
l
|
I
|
|
I
I
|
l
|
I
|
|
r
|
|
I
I
|
l
|
I
|
|
I
I
-

» The high-dimensional big data of power systems introduces several challenges :

\
. High mathematical complexity
{

. High computational burden
' Curse of dimensionality

‘ Large data storage requirements

/
. Low algorithmic efficiency
IEEE PES \umr)| 4 g - - .
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Advanced Statistical Modeling for High Dimensional Cases

UNIVERSITY <IEEE

VRS
Statistical P T T T T T T T T
Techniques 1 Reducing the dimensions of the |
|
= et — @ gty ransioming them |
eatur . . .
Extraction and Dlgggzgiirilllty
Se&cti n
T T lgglzftvl‘l?ed Linear Methods Non Linear
1 Extracting and selecting Eliginatjon Methods
! suitable dimensions without | ~ ~
I modifying them I N - Pfincipal ——
fTTTTTT T T T ! For\év;llréicggiture Component Diffusion Maps
~— Analysis (PCA) ~—
L~ N | N
Etc Compressed Self-Organizing
’ Sensing Maps
N N N
7N L 7N
Etc. Etc.
N N
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2 Deep Learning Technique

For Big Data Applications

Performance comparison of traditional

methods versus deep-learning methods
I I N DD DN D B B .

\4

Popular Network Architectures in
Deep Learning:

Deep Learning

Performance

* Handling big data problems;

*  Recurrent Neural Network; Long/Short Traditional methods

Term Memory (LSTM), *  Great performance in high-
»  Convolutional Neural Networks, dimensional search spaces;
*  Boltzmann Machine,
+  Deep Belief Networks, Capturing long-term
«  Stacked Auto-encoders, dependencies amongst data.
* Etc.

Megabytes -> Gigabytes -> Terabytes ->Petabytes
—

Data Volume
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Uncertainties in Power Systems and Modeling Approaches

COwWer dSystems

-

Renewable energy sources

~

Load demand

Dynamic line rating

Line/Generator outage

Fuel/Energy price

Market regulations, etc.

sd AN

I ]
IEEE PES u-m

UNIVERSITY <IEEE

Uncertainty
Modeling
Approaches

Possibilistic
models
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Applications of Advanced Prediction
Techniques in Smart Grids
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Example I: Wind Power Prediction
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Wind Power Facilities in Saskatchewan

Cypress Wind Power Facility 10.6 MW e ; >

SunBridge Wind Power Facility ~ 11.2 MW %) N

Centennial Wind Power Facility 149.4 MW s 0 : '.:':'*' et ..._',"“_"_".‘_":‘
Z8 Morse Creek Wind Power Facility 23 MW :WM . a;_:_:-_ R d 2 _ T
Red Lilly Wind Power Facility 26.4 MW wenra | T CSaSeaTcnEwAN 1 A dn
I Summerberry Wind Power Facility 20 MW e e e Oy (8
Chaplin Wind Power Facility 177.1 MW e o -
1 Western Lily Wind Power Facility 20 MW — ;umémm; 2 _FMM“" “'u
El SN e e i

Riverhurst Wind Power Facility 10 MW P : i
. i i tm.:.ﬂurl'l.bnldt' :_ j_‘:_

i e TRy T _- : : W -_J -l-"ﬂ'l‘mﬁ"*

! ﬂ -lﬂ_eﬁ-'rnu : .'

. Increasing wind power penetration to 30% i 7z | =
| (=2100 MW) by 2030 i e et

: o USA e .
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= Wind Power Time Series Plots

o 1T 2T (N-2()NI';1 )TNT Hankel Matrix P, P(1T) P(2T) P(3T)
EEEEEEEEEEDN PZ P(ZT) P(3T) P(4T)
. . NT ] . = . . .
Time Series {P()}r | | = = = =
i Py_, P((N-2)T) P((N—1)T) P(NT)
=
=
. Q 3000
t\l, gl\ 2000
E =
= =
Q~< 1000
0
3000
I = 2000 2500 3000
X(n-1) x(n) (kw) o oo P(nT)
n (kW)
Perfect Periodic Time Series ( x(n) = sin (Zn X %) ) Sotavento Wind Farm, Spain
Sz
i2 S
< iz
T
p h - -
“02) vy PiT) (MW)
) (MW)
Alberta Electric System Operator (AESO)’s

Centennial Wind Farm, SK,
Canada

Wind Power Generation, AB, Canada
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Novel Short-Term Wind Power Prediction Method

1-hour Ahead Prediction

T

. . — Actual
» Chaos is a property of certain non- ——- Proposed I
linear systems with highly wild, ~ [/ ) P .. Commercial
random-looking and non-periodic Package i

behavior.

» Existing wind power prediction
methods cannot handle the chaosity of
wind power time series.

Wind Power (MW)

Samples (10-minute)

» A novel multi-step short-term wind power prediction method [2] is proposed:
*  Ensemble Empirical Mode Decomposition (EEMD) to separate wind power time series into
several components with different time-frequency characteristics (scales).
*  Chaotic Time Series Analysis to determine chaotic components.
*  Multi-Scale Singular Spectrum Analysis (MSSSA) to smoothen the chaotic components by
eliminating extremely rapid changes with low amplitude (Maintain the general trend!).

[2] N. Safari, C. Y. Chung, and G. C. D. Price, “A novel multi-step short-term wind power prediction framework based on chaotic
time series analysis and singular spectrum analysis”, IEEE Transactions on Power Systems.
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® prediction Interval (P1) Construction for Modelling Wind Power Uncertainty

Low reliability and high sharpness

MHigh operating cost

< <

|| Optimal operating cost ||
= %_

Prediction Interval (PI) Evaluation Criteria
= Sharpness: Average value of PI width.

= Reliability: Percentage of wind power samples coverage.

IR <
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Performance of the Proposed Pl Construction

Wind Power (p.u.) Wind Power (p.u.)

Wind Power (p.u.)

1 l:’l PI 95"%)
0.8 - Real Data
0.6
0.4
0.2
(U] =
20 40 60 80 100 120 140 160 180 200 220 240
Sample Number
The constructed PI for 1-hour prediction horizon for AESO dataset.
1 T T T T T T T T T PI 95,
0.8 B - Real Data ]
0.6 it - LA
0.4 I J el ~ \ e lndi G i Tl Gl dl il
0.2 ® - AN A ..-’-. Gl bt il by il i A o™
0 Il Il Il b Il Il < 1 1 .’ A ) ™
20 40 60 80 100 120 140 160 180 200 220 240
Sample Number
The constructed PI for 1-hour prediction horizon for Centennial dataset.
1 T T T T T T T T T PI 95%
0.8 5 - Real Data
0.6
0.4
0.2
1] - A RS Vee P S e’ oo
20 40 60 80 100 120 140 160 180 200 220 240

Sample Number

The constructed PI for 1-hour prediction horizon for Sotavento dataset.

PI Construction
Framework [3]
developed by
improving diffusion-
based kernel density
estimators.

Highly reliable and
sharp PIs obtained.

[3] B. Khorramdel, C.Y. Chung, and N. Safari, G.C.D. Price, “A Fuzzy Adaptive Probabilistic Wind Power Prediction

Framework Using Diffusion Kernel Density Estimators,” IEEE Trans. on Power Systems.
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Example II: Real-time Thermal Rating
(Overhead Lines)
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Real-time Thermal Rating (RTTR) vs. Static Thermal Rating (STR)

Measuring RTTR | --

-
-
-

Static Thermal
Rating (STR)

e  Inaccurate
e (Conservative

—_ =
—— -
—— -
—— -

!
: |
! . .
: e Relieve congestion « | R N 4
|+ Avoid/defer new investment | Sometimes . |
!
!

- i » Heat balance equation

~ I * Joule & Magnetic Heating (P,) , Solar Heating (Py)
» Convective Cooling (P.), Radiative cooling (P,)
* CIGRE, IEEE

P, + Ps = P. + B
YL » Affecting factors

* Solar radiation
Wind speed
Wind direction

Solar Heating r

Convective Cooling .

Source: CIGRE standard Amblent temperature
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Five Types of RTTR Monitoring Systems

Conductor model directional

Traditional A _
propeller-type & anemometer Solar radiation Ambient
ultrasonic ~ Wind speed & direction J u LJ L temperature
anemometers ¥

!

h 4

A Conductor / s
temperature Conductor E

Tension

Conductor
temperature

Power donut_

Ground
Clearance

- Sagometer

Tension

h 4
Clearance . . . .
- 4 Heat Balance Equation is required in

»
Hand-held SONAR each monitoring system to calculate
the RTTR.

Tension Monitoring Systems-Loadcell Monitors
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= RTTR Prediction for Operation

Measurement | | Predicted RTTR |
* Suitable locations and spans |

% Heat Balance Model

* CIGRE, IEEE, IEC standards
» Consider four weather factors

|
|
|
|
N Wind speed § § Wind direction 1 |
U S U | .
I I Py +Ps = P+ P,
| . Ambient temperature | |  Solar radiation | | | - |
el el B
@ I Joule & Mdgﬂet.’t
____________________________ |
Prediction |

|
|

i * Method: Statistical and machine-

| learning based

& Output: Predicted values for each factor
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= Probabilistic RTTR Prediction for Operation

Static Thermal Line Rating = 685A

w : e S

.~ Anyoverestimation of RTTR
* can lead to lifetime
degradation and failure of
:**** - *ﬁ " . OHL, safety hazards, etc.

'*'-*- » *ﬁw* **s.,**#*;'* ’." »  Asecure yet sharp
w e ). probabilistic prediction
i iy \ model [é'l] for an homfr ahead
, forecasting of RTTR is
proposed.

Ampacity (Ampere)

Sample # (1-hour sample time)

CL* =95%

CL*: specified confidence level

[4] N. Safari, M. Mazhari, C. Y. Chung, et.al., “A Secure Deep Probabilistic Dynamic Thermal Line Rating Prediction" Journal of
Modern Power Systems and Clean Energy (MPCE).
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Example II1: Transient Stability Prediction of
Power Systems With High Wind Power
Penetration
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Transient Stability Prediction

Fast Prediction For a Post-Fault System

Rotor Angles Curves

1400 4 Allow more time to
1200 1 / take remedial actions

800 Stability prediction:
Unstable case

Angle (degree)

Power lines

Telecom lines

1
|
|
|
1
|
|
|
1
|
|
|
1
|
_ I
é = Phasor Measurement ﬁj = Feeder Monitoring, Control / : - ’5:0

b e5re I
|
|
1
|
|
|
1
|
|
|
1
|
|
|

P e

e Moeonitoring infrastructure components: 0 >
: . . </
¥05 1.0
\ N Unit (PMU) 1 ;"/ Unit {PDC+RTSE+ccntro|+protectit):)/ ts: fault occurs te: fault clearance
B T T T ———— —
. _..-'5 4
Real-Time Phasor Measurement
50 1
————— -

25 1
0

Angle (degree)

[ Stability prediction:
Stable case

0.0 0.5 1.0 1.5 2.0 2.5
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®  Real-Time Transient Stability Prediction Using Machine Learning and PMUs

INSTANTANEOUS
REAL-TIME DATA PREDICTION

-----------------------------------------------------------------
. .

| Use the data (voltage, rotor speed, etc) i
| for before-, during-, and post-fault as j:
E‘ 1 features for stability prediction 1

: Integration of wind power plants:

: : The amount of
> Can impose multisource uncertainties to power systems and : required training
exponentially increase the possible system operating conditions; data exploded

» Can frequently change the generation schedule and system inertia.
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Equivalent the Wind Power Plant as Dynamic Admittances [5]

Em+1 '
Network —,—O—@ :

!
|

!

(reduced at generator | |
internal nodes and WPPs ) |
!

“( @‘( |
—— =Ll L = Equivalent Circuit of WPPs

| o ' | "
I !Em+1 | a— [(1 - Tg) Y; ]
:(:)—OT: v New ﬂY’ 1!0 <>| i ZgEG E;) Y9
. m+ : '
S ¥ = | Equivalent | = o : I7h
. ! + Z 1—=|Yin
E;

Network
heH

[5] Y. Chen, M. Mazhari, C.Y. Chung, and B. Pal, "Rotor Angle Stability Prediction of Power Systems with High Wind
Power Penetration Using a Stability Index Vector," I[EEE Trans. on Power Systems.
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= Estimated Stability Index (SI) Column Vector for Stability Prediction

P P eO
Calculate the stability index (S7) utilizing 4
Extended Equal Area Criterion (EEAC) N = - t¢: fault time;
considering the dynamic admittances P == Adec tc: fault clearance
7 time;

t,: time instant
when the system

reaches the unstable
equilibrium point
S~ S

Decision Made by
Machine Learning

N
SI _ Adec—Aacc N\
— P
Agcc P
B
~//0|6 (tf)5(tc) St N o
______ = ————
’ \ \
Real-Time Data All P;;sg::(llrll\j[t:)blhty |
SI vector

l .'
I E : . '
I ﬁ I IMl -—-)r SIl
l
i __ I Extend S7 to anI M, ~~" Sk
I ' _ ;ST column : :
9" ) vector \

TH

\ Aike IM, = => SI,
e e e Em = - ~_—em e T o =
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Case Studies

The modified 16-machine network with 9 wind power plants (WPPs) 'y, =000 cases are simulated for each penetration

Fault is applied on each line randomly
Fault duration is select between 6-15 cycles
randomly

Load level and WPP generation is sampled
from historical data for each simulation

: All WPPs use DFIG wind turbines

i All the dataset are trained and tested by
\

ensemble decision tree

-

/
/

Comparison of the accuracy of different features N e e e e e -
Features
WIC* Rotor angles (9) Rotor speeds (w) Terminal voltages (V;;)
10% 93.61% 97.05% 96.88%
20% 92.59% 95.38% 95.79%
30% 92.18% 94.82% 94.42%
40% 91.14% 92.06% 92.29%
50% 89.56% 91.24% 91.35%
{?IE\IEI\F;ESilSlTY @ IEEE *WIC: Wind power Installed Capacity ratio



Presenter Notes
Presentation Notes





Example IV: Load Forecasting in
Distribution Systems
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= Unlock the Value of Smart Meter Data

» The remarkable evolution of smart meters has provided better network visibility of the
distribution networks through advanced metering infrastructure.

O‘ Interval consumption, demand and Simple applications

voltage data  Billing/Prepayment

A i * Customer relationship
‘ garegation management (CRM)

_ * Load monitoring
* Virtual meter data of transformer, feeder

and substation from GIS Advanced applications
_ * Field operation & planning
‘ Integration « Asset management

C Outage management
|;|E SCADA

Rely on accurate load
forecasts
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= Smart Meters Analysis in City of Saskatoon

Data source: https://www.saskatoon.ca/

Saskatoon Light and Power (SL&P) have installed smart :
| meters in all of the communities within its service area (Over 99% !

SL&P Service Area ' of more than 65,000 customers ) :

y - Total capital costs: CAD 24 M
—— | System operation costs: CAD 22 M

- 1 Total projected savings: CAD 76 M
: Payback period: ~ 11 years

I
d

1
|
|
|
|
|
|
1
I
]
1
l

=1

|

|

|

1

]

]

|

Ii ; ' <§®WTPO 477
f : 0 (- 0 ' B "l’ ]{ s ——————————————————————————————————
S a0 %@5 | & Our research focuscs on using SL&P smart meters data |
4 |
Jies oo o ' for customers segmentation and load forecasting. I
0 T e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = == J

v Facilitate system operation & planning 1
v" Optimize asset management :
v Implement demand response '
v Encourage energy efficiency :

Aims
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https://www.saskatoon.ca/

Customer Segmentation and Load Forecasting

Total: 3500 customers

Cluster No. of Customers
1 1641
2 1352
3 360
Outliers 147

Outliers are defined as those whose average consumption
is lower than 0.1 KWh per 30 mins (unoccupied).

3500 T T T T T

T T T
P L g
(i e 1
—_—
~ PR S Ty
e LU e N
& 0 G i i\ L LYy o
-_'g-. /,-'453/)'__/ — \_H,‘_-_o:__:z:\_?j\)%
- -
£ . 1500 **:_ . A ,:’/ \._Q
3 -::ff}}v‘~—~*’ //
c 1000 = !ﬂ:: = 4
3
500 b
0 | | | | | | | | |
] 10 15 20 25 30 B 40 45
Time Step/30mins
IEEE PES |
UNIVERSITY <$IEEE

1400
1200
1000
800
600
400
200
0

Consumption / KWh

Proposed without segmentation

Typical daily profile in summer season

cluster1

---.--.._____________,zf"""'-...__fflfffiEfiEE%"'-""-"--\-'-—‘------..\‘-
cluster3

123456 7 8 9101112131415161718192021222324

Time/Hours
Forecast Evaluated by MAPE

Proposed 2.98%

5.79%

MAPE: The Mean Absolute Percentage Error

90% prediction intervals

50% prediction intervals

real consumption value

forecasted consumption value
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Conclusions
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Conclusions

» Power systems are facing a revolutionary transformation to incorporate various smart
grids components.

» Such components tightly integrated with ICT and IoT and consequently generated a
vast amount of data suitable to support different applications in a smart grid.

» Four different examples were discussed to showcase the applications of advanced
prediction methods to resolve current barriers in power systemes.

» Power industries are facing many new technical problems => Huge research
opportunities.
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® IEEE PES Election is now open: https://eballot.app/ieee/

A Candidate for PES President-Elect: CY Chung

My goals for PES: fostering global collaboration, innovation, and inclusion.
(Target a sustainable, reliable, and equitable energy future with special attention
to boosting the role of Women in Engineering and underprivileged regions.)

My vision leverages PES’s strengths to lead the global transition towards
decarbonization, digitalization, and decentralization of power and energy systems.

Propose a five-step plan:

(i) establishing stronger local partnerships,

(ii) internationalizing PES through diverse connections,
(iii)developing targeted marketing and outreach,

(iv)boosting region- and minority-tailored membership development,
(v) enhancing member support.

Ensuring PES remains a vital resource worldwide.

IEEE PES
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